博客
关于我
强烈建议你试试无所不能的chatGPT,快点击我
Pytorch实现UNet例子学习
阅读量:6493 次
发布时间:2019-06-24

本文共 26219 字,大约阅读时间需要 87 分钟。

参考:https://github.com/milesial/Pytorch-UNet

实现的是二值汽车图像语义分割,包括 dense CRF 后处理.

使用python3,我的环境是python3.6

 

1.使用

1> 预测

1)查看所有的可用选项:

python predict.py -h

返回:

(deeplearning) userdeMBP:Pytorch-UNet-master user$ python predict.py -husage: predict.py [-h] [--model FILE] --input INPUT [INPUT ...]                  [--output INPUT [INPUT ...]] [--cpu] [--viz] [--no-save]                  [--no-crf] [--mask-threshold MASK_THRESHOLD] [--scale SCALE]optional arguments:  -h, --help            show this help message and exit  --model FILE, -m FILE                        Specify the file in which is stored the model (default                        : 'MODEL.pth')  #指明使用的训练好的模型文件,默认使用MODEL.pth  --input INPUT [INPUT ...], -i INPUT [INPUT ...] #指明要进行预测的图像文件,必须要有的值                        filenames of input images  --output INPUT [INPUT ...], -o INPUT [INPUT ...] #指明预测后生成的图像文件的名字                        filenames of ouput images  --cpu, -c             Do not use the cuda version of the net #指明使用CPU,默认为false,即默认使用GPU  --viz, -v             Visualize the images as they are processed #当图像被处理时,将其可视化,默认为false,即不可以可视化  --no-save, -n         Do not save the output masks #不存储得到的预测图像到某图像文件中,和--viz结合使用,即可对预测结果可视化,但是不存储结果,默认为false,即会保存结果  --no-crf, -r          Do not use dense CRF postprocessing #指明不使用CRF对输出进行后处理,默认为false,即使用CRF  --mask-threshold MASK_THRESHOLD, -t MASK_THRESHOLD                        Minimum probability value to consider a mask pixel #最小化考虑掩模像素为白色的概率值,默认为0.5                        white  --scale SCALE, -s SCALE                        Scale factor for the input images #输入图像的比例因子,默认为0.5

 

2)预测单一图片image.jpg并存储结果到output.jpg的命令

python predict.py -i image.jpg -o output.jpg

测试一下:

(deeplearning) userdeMBP:Pytorch-UNet-master user$ python predict.py --cpu --viz -i image.jpg -o output.jpgLoading model MODEL.pthUsing CPU version of the net, this may be very slowModel loaded !Predicting image image.jpg .../anaconda3/envs/deeplearning/lib/python3.6/site-packages/torch/nn/modules/upsampling.py:129: UserWarning: nn.Upsample is deprecated. Use nn.functional.interpolate instead.  warnings.warn("nn.{} is deprecated. Use nn.functional.interpolate instead.".format(self.name))/anaconda3/envs/deeplearning/lib/python3.6/site-packages/torch/nn/functional.py:1332: UserWarning: nn.functional.sigmoid is deprecated. Use torch.sigmoid instead.  warnings.warn("nn.functional.sigmoid is deprecated. Use torch.sigmoid instead.")Visualizing results for image image.jpg, close to continue ...

返回可视化图片为:

关闭该可视化图片命令就会运行结束:

Mask saved to output.jpg(deeplearning) userdeMBP:Pytorch-UNet-master user$

并且在当前文件夹中生成名为output.jpg的文件,该图为:

 

 

3)预测多张图片并显示,预测结果不存储:

python predict.py -i image1.jpg image2.jpg --viz --no-save

测试:

先得到的是image1.jpg的可视化结果:

(deeplearning) userdeMBP:Pytorch-UNet-master user$ python predict.py -i image1.jpg image2.jpg --viz --no-save --cpuLoading model MODEL.pthUsing CPU version of the net, this may be very slowModel loaded !Predicting image image1.jpg .../anaconda3/envs/deeplearning/lib/python3.6/site-packages/torch/nn/modules/upsampling.py:129: UserWarning: nn.Upsample is deprecated. Use nn.functional.interpolate instead.  warnings.warn("nn.{} is deprecated. Use nn.functional.interpolate instead.".format(self.name))/anaconda3/envs/deeplearning/lib/python3.6/site-packages/torch/nn/functional.py:1332: UserWarning: nn.functional.sigmoid is deprecated. Use torch.sigmoid instead.  warnings.warn("nn.functional.sigmoid is deprecated. Use torch.sigmoid instead.")Visualizing results for image image1.jpg, close to continue ...

图为:

关闭这个后就会接着生成image2.jpg的可视化结果:

Predicting image image2.jpg ...Visualizing results for image image2.jpg, close to continue ...

返回图为:

这时候关闭该可视化服务就会结束了,并且没有在本地保存生成的图片

 

4)如果你的计算机只有CPU,即CPU-only版本,使用选项--cpu指定

5)你可以指定你使用的训练好的模型文件,使用--mode MODEL.pth

 

6)如果使用上面的命令选项--no-crf:

(deeplearning) userdeMBP:Pytorch-UNet-master user$ python predict.py -i image1.jpg image2.jpg --viz --no-save --cpu --no-crf

返回的结果是:

还有:

可见crf后处理后,可以将一些不符合事实的判断结果给剔除,使得结果更加精确

 

2〉训练

python train.py -h

首先需要安装模块pydensecrf,实现CRF条件随机场的模块:

pip install pydensecrf但是出错: pydensecrf/densecrf/include/Eigen/Core:22:10: fatal error: 'complex' file not found  #include 
^~~~~~~~~ 1 warning and 1 error generated. error: command 'gcc' failed with exit status 1 ---------------------------------------- Failed building wheel for pydensecrf Running setup.py clean for pydensecrfFailed to build pydensecrf

解决办法,参考https://github.com/lucasb-eyer/pydensecrf:

先安装cython,需要0.22以上的版本:

(deeplearning) userdeMBP:Pytorch-UNet-master user$ pip install -U cythonInstalling collected packages: cythonSuccessfully installed cython-0.29.7

然后从git安装最新版本:

pip install git+https://github.com/lucasb-eyer/pydensecrf.git

但还是没有成功

 

后面找到了新的方法,使用conda来安装就成功了:

userdeMacBook-Pro:~ user$ conda install -n deeplearning -c conda-forge pydensecrf

-c指明从conda-forge下载模块

conda-forge是可以安装软件包的附加渠道,使用该conda-forge频道取代defaults

因为直接安装conda install -n deeplearning pydensecrf找不到该模块

 

这时候运行python train.py -h可见支持的选项的信息:

(deeplearning) userdeMBP:Pytorch-UNet-master user$ python train.py -hUsage: train.py [options]Options:  -h, --help            show this help message and exit  -e EPOCHS, --epochs=EPOCHS                        number of epochs #指明迭代的次数  -b BATCHSIZE, --batch-size=BATCHSIZE                        batch size #图像批处理的大小  -l LR, --learning-rate=LR                        learning rate #使用的学习率  -g, --gpu             use cuda #使用GPU进行训练  -c LOAD, --load=LOAD  load file model #下载预训练的文件,在该基础上进行训练  -s SCALE, --scale=SCALE                        downscaling factor of the images #图像的缩小因子

 

3>代码分析

1》unet定义网络

unet/unet_parts.py

# sub-parts of the U-Net modelimport torchimport torch.nn as nnimport torch.nn.functional as F#实现左边的横向卷积class double_conv(nn.Module):     '''(conv => BN => ReLU) * 2'''    def __init__(self, in_ch, out_ch):        super(double_conv, self).__init__()        self.conv = nn.Sequential(            #以第一层为例进行讲解            #输入通道数in_ch,输出通道数out_ch,卷积核设为kernal_size 3*3,padding为1,stride为1,dilation=1            #所以图中H*W能从572*572 变为 570*570,计算为570 = ((572 + 2*padding - dilation*(kernal_size-1) -1) / stride ) +1            nn.Conv2d(in_ch, out_ch, 3, padding=1),             nn.BatchNorm2d(out_ch), #进行批标准化,在训练时,该层计算每次输入的均值与方差,并进行移动平均            nn.ReLU(inplace=True), #激活函数            nn.Conv2d(out_ch, out_ch, 3, padding=1), #再进行一次卷积,从570*570变为 568*568            nn.BatchNorm2d(out_ch),            nn.ReLU(inplace=True)        )    def forward(self, x):        x = self.conv(x)        return x#实现左边第一行的卷积class inconv(nn.Module):#     def __init__(self, in_ch, out_ch):        super(inconv, self).__init__()        self.conv = double_conv(in_ch, out_ch) # 输入通道数in_ch为3, 输出通道数out_ch为64    def forward(self, x):        x = self.conv(x)        return x#实现左边的向下池化操作,并完成另一层的卷积class down(nn.Module):    def __init__(self, in_ch, out_ch):        super(down, self).__init__()        self.mpconv = nn.Sequential(            nn.MaxPool2d(2),            double_conv(in_ch, out_ch)        )    def forward(self, x):        x = self.mpconv(x)        return x#实现右边的向上的采样操作,并完成该层相应的卷积操作class up(nn.Module):     def __init__(self, in_ch, out_ch, bilinear=True):        super(up, self).__init__()        #  would be a nice idea if the upsampling could be learned too,        #  but my machine do not have enough memory to handle all those weights        if bilinear:#声明使用的上采样方法为bilinear——双线性插值,默认使用这个值,计算方法为 floor(H*scale_factor),所以由28*28变为56*56            self.up = nn.Upsample(scale_factor=2, mode='bilinear', align_corners=True)        else: #否则就使用转置卷积来实现上采样,计算式子为 (Height-1)*stride - 2*padding -kernal_size +output_padding            self.up = nn.ConvTranspose2d(in_ch//2, in_ch//2, 2, stride=2)        self.conv = double_conv(in_ch, out_ch)    def forward(self, x1, x2): #x2是左边特征提取传来的值        #第一次上采样返回56*56,但是还没结束        x1 = self.up(x1)                # input is CHW, [0]是batch_size, [1]是通道数,更改了下,与源码不同        diffY = x1.size()[2] - x2.size()[2] #得到图像x2与x1的H的差值,56-64=-8        diffX = x1.size()[3] - x2.size()[3] #得到图像x2与x1的W差值,56-64=-8        #用第一次上采样为例,即当上采样后的结果大小与右边的特征的结果大小不同时,通过填充来使x2的大小与x1相同        #对图像进行填充(-4,-4,-4,-4),左右上下都缩小4,所以最后使得64*64变为56*56        x2 = F.pad(x2, (diffX // 2, diffX - diffX//2,                        diffY // 2, diffY - diffY//2))                # for padding issues, see         # https://github.com/HaiyongJiang/U-Net-Pytorch-Unstructured-Buggy/commit/0e854509c2cea854e247a9c615f175f76fbb2e3a        # https://github.com/xiaopeng-liao/Pytorch-UNet/commit/8ebac70e633bac59fc22bb5195e513d5832fb3bd                #将最后上采样得到的值x1和左边特征提取的值进行拼接,dim=1即在通道数上进行拼接,由512变为1024        x = torch.cat([x2, x1], dim=1)        x = self.conv(x)        return x#实现右边的最高层的最右边的卷积class outconv(nn.Module):    def __init__(self, in_ch, out_ch):        super(outconv, self).__init__()        self.conv = nn.Conv2d(in_ch, out_ch, 1)    def forward(self, x):        x = self.conv(x)        return x

 

unet/unetmodel.py

# full assembly of the sub-parts to form the complete netimport torch.nn.functional as Ffrom .unet_parts import *class UNet(nn.Module):    def __init__(self, n_channels, n_classes): #图片的通道数,1为灰度图像,3为彩色图像        super(UNet, self).__init__()        self.inc = inconv(n_channels, 64) #假设输入通道数n_channels为3,输出通道数为64        self.down1 = down(64, 128)        self.down2 = down(128, 256)        self.down3 = down(256, 512)        self.down4 = down(512, 512)        self.up1 = up(1024, 256)        self.up2 = up(512, 128)        self.up3 = up(256, 64)        self.up4 = up(128, 64)        self.outc = outconv(64, n_classes)    def forward(self, x):        x1 = self.inc(x)        x2 = self.down1(x1)        x3 = self.down2(x2)        x4 = self.down3(x3)        x5 = self.down4(x4)        x = self.up1(x5, x4)        x = self.up2(x, x3)        x = self.up3(x, x2)        x = self.up4(x, x1)        x = self.outc(x)        return F.sigmoid(x) #进行二分类

 

 

2》utils

实现dense CRF的代码utils/crf.py:

详细可见

#coding:utf-8import numpy as npimport pydensecrf.densecrf as dcrfdef dense_crf(img, output_probs): #img为输入的图像,output_probs是经过网络预测后得到的结果    h = output_probs.shape[0] #高度    w = output_probs.shape[1] #宽度    output_probs = np.expand_dims(output_probs, 0)    output_probs = np.append(1 - output_probs, output_probs, axis=0)    d = dcrf.DenseCRF2D(w, h, 2) #NLABELS=2两类标注,车和不是车    U = -np.log(output_probs) #得到一元势    U = U.reshape((2, -1)) #NLABELS=2两类标注    U = np.ascontiguousarray(U) #返回一个地址连续的数组    img = np.ascontiguousarray(img)    d.setUnaryEnergy(U) #设置一元势    d.addPairwiseGaussian(sxy=20, compat=3) #设置二元势中高斯情况的值    d.addPairwiseBilateral(sxy=30, srgb=20, rgbim=img, compat=10)#设置二元势众双边情况的值    Q = d.inference(5) #迭代5次推理    Q = np.argmax(np.array(Q), axis=0).reshape((h, w)) #得列中最大值的索引结果    return Q

 

utils/utils.py

import randomimport numpy as np#将图像分成左右两块def get_square(img, pos):     """Extract a left or a right square from ndarray shape : (H, W, C))"""    h = img.shape[0]    if pos == 0:        return img[:, :h]    else:        return img[:, -h:]def split_img_into_squares(img):    return get_square(img, 0), get_square(img, 1)#对图像进行转置,将(H, W, C)变为(C, H, W)def hwc_to_chw(img):    return np.transpose(img, axes=[2, 0, 1])def resize_and_crop(pilimg, scale=0.5, final_height=None):    w = pilimg.size[0] #得到图片的宽    h = pilimg.size[1]#得到图片的高    #默认scale为0.5,即将高和宽都缩小一半    newW = int(w * scale)     newH = int(h * scale)    #如果没有指明希望得到的最终高度    if not final_height:        diff = 0    else:        diff = newH - final_height    #重新设定图片的大小    img = pilimg.resize((newW, newH))    #crop((left,upper,right,lower))函数,从图像中提取出某个矩形大小的图像。它接收一个四元素的元组作为参数,各元素为(left, upper, right, lower),坐标系统的原点(0, 0)是左上角    #如果没有设置final_height,其实就是取整个图片    #如果设置了final_height,就是取一个上下切掉diff // 2,最后高度为final_height的图片    img = img.crop((0, diff // 2, newW, newH - diff // 2))    return np.array(img, dtype=np.float32)def batch(iterable, batch_size):    """批量处理列表"""    b = []    for i, t in enumerate(iterable):        b.append(t)        if (i + 1) % batch_size == 0:            yield b            b = []    if len(b) > 0:        yield b#然后将数据分为训练集和验证集两份def split_train_val(dataset, val_percent=0.05):    dataset = list(dataset)    length = len(dataset) #得到数据集大小    n = int(length * val_percent) #验证集的数量    random.shuffle(dataset) #将数据打乱    return {
'train': dataset[:-n], 'val': dataset[-n:]} #对像素值进行归一化,由[0,255]变为[0,1]def normalize(x): return x / 255#将两个图片合并起来def merge_masks(img1, img2, full_w): h = img1.shape[0] new = np.zeros((h, full_w), np.float32) new[:, :full_w // 2 + 1] = img1[:, :full_w // 2 + 1] new[:, full_w // 2 + 1:] = img2[:, -(full_w // 2 - 1):] return new# credits to https://stackoverflow.com/users/6076729/manuel-lagunasdef rle_encode(mask_image): pixels = mask_image.flatten() # We avoid issues with '1' at the start or end (at the corners of # the original image) by setting those pixels to '0' explicitly. # We do not expect these to be non-zero for an accurate mask, # so this should not harm the score. pixels[0] = 0 pixels[-1] = 0 runs = np.where(pixels[1:] != pixels[:-1])[0] + 2 runs[1::2] = runs[1::2] - runs[:-1:2] return runs

 

utils/data_vis.py实现结果的可视化:

import matplotlib.pyplot as pltdef plot_img_and_mask(img, mask):    fig = plt.figure()    a = fig.add_subplot(1, 2, 1) #先是打印输入的图片    a.set_title('Input image')    plt.imshow(img)    b = fig.add_subplot(1, 2, 2) #然后打印预测得到的结果图片    b.set_title('Output mask')    plt.imshow(mask)    plt.show()

 

utils/load.py

## load.py : utils on generators / lists of ids to transform from strings to#           cropped images and masksimport osimport numpy as npfrom PIL import Imagefrom .utils import resize_and_crop, get_square, normalize, hwc_to_chwdef get_ids(dir):    """返回目录中的id列表"""    return (f[:-4] for f in os.listdir(dir)) #图片名字的后4位为数字,能作为图片iddef split_ids(ids, n=2):    """将每个id拆分为n个,为每个id创建n个元组(id, k)"""    #等价于for id in ids:    #       for i in range(n):    #           (id, i)    #得到元祖列表[(id1,0),(id1,1),(id2,0),(id2,1),...,(idn,0),(idn,1)]    #这样的作用是后面会通过后面的0,1作为utils.py中get_square函数的pos参数,pos=0的取左边的部分,pos=1的取右边的部分    return ((id, i)  for id in ids for i in range(n))def to_cropped_imgs(ids, dir, suffix, scale):    """从元组列表中返回经过剪裁的正确img"""    for id, pos in ids:        im = resize_and_crop(Image.open(dir + id + suffix), scale=scale) #重新设置图片大小为原来的scale倍        yield get_square(im, pos) #然后根据pos选择图片的左边或右边def get_imgs_and_masks(ids, dir_img, dir_mask, scale):    """返回所有组(img, mask)"""    imgs = to_cropped_imgs(ids, dir_img, '.jpg', scale)    # need to transform from HWC to CHW    imgs_switched = map(hwc_to_chw, imgs) #对图像进行转置,将(H, W, C)变为(C, H, W)    imgs_normalized = map(normalize, imgs_switched) #对像素值进行归一化,由[0,255]变为[0,1]    masks = to_cropped_imgs(ids, dir_mask, '_mask.gif', scale) #对图像的结果也进行相同的处理    return zip(imgs_normalized, masks) #并将两个结果打包在一起def get_full_img_and_mask(id, dir_img, dir_mask):    im = Image.open(dir_img + id + '.jpg')    mask = Image.open(dir_mask + id + '_mask.gif')    return np.array(im), np.array(mask)

 

3》预测

predict.py使用训练好的U-net网络对图像进行预测,使用dense CRF进行后处理:

#coding:utf-8import argparseimport osimport numpy as npimport torchimport torch.nn.functional as Ffrom PIL import Imagefrom unet import UNetfrom utils import resize_and_crop, normalize, split_img_into_squares, hwc_to_chw, merge_masks, dense_crffrom utils import plot_img_and_maskfrom torchvision import transformsdef predict_img(net,                full_img,                scale_factor=0.5,                out_threshold=0.5,                use_dense_crf=True,                use_gpu=False):    net.eval() #进入网络的验证模式,这时网络已经训练好了    img_height = full_img.size[1] #得到图片的高    img_width = full_img.size[0] #得到图片的宽    img = resize_and_crop(full_img, scale=scale_factor) #在utils文件夹的utils.py中定义的函数,重新定义图像大小并进行切割,然后将图像转为数组np.array    img = normalize(img) #对像素值进行归一化,由[0,255]变为[0,1]    left_square, right_square = split_img_into_squares(img)#将图像分成左右两块,来分别进行判断    left_square = hwc_to_chw(left_square) #对图像进行转置,将(H, W, C)变为(C, H, W),便于后面计算    right_square = hwc_to_chw(right_square)    X_left = torch.from_numpy(left_square).unsqueeze(0) #将(C, H, W)变为(1, C, H, W),因为网络中的输入格式第一个还有一个batch_size的值    X_right = torch.from_numpy(right_square).unsqueeze(0)        if use_gpu:        X_left = X_left.cuda()        X_right = X_right.cuda()    with torch.no_grad(): #不计算梯度        output_left = net(X_left)        output_right = net(X_right)        left_probs = output_left.squeeze(0)        right_probs = output_right.squeeze(0)        tf = transforms.Compose(            [                transforms.ToPILImage(), #重新变成图片                transforms.Resize(img_height), #恢复原来的大小                transforms.ToTensor() #然后再变成Tensor格式            ]        )                left_probs = tf(left_probs.cpu())        right_probs = tf(right_probs.cpu())        left_mask_np = left_probs.squeeze().cpu().numpy()        right_mask_np = right_probs.squeeze().cpu().numpy()    full_mask = merge_masks(left_mask_np, right_mask_np, img_width)#将左右两个拆分后的图片合并起来    #对得到的结果根据设置决定是否进行CRF处理    if use_dense_crf:        full_mask = dense_crf(np.array(full_img).astype(np.uint8), full_mask)    return full_mask > out_thresholddef get_args():    parser = argparse.ArgumentParser()    parser.add_argument('--model', '-m', default='MODEL.pth', #指明使用的训练好的模型文件,默认使用MODEL.pth                        metavar='FILE',                        help="Specify the file in which is stored the model"                             " (default : 'MODEL.pth')")    parser.add_argument('--input', '-i', metavar='INPUT', nargs='+',  #指明要进行预测的图像文件                        help='filenames of input images', required=True)    parser.add_argument('--output', '-o', metavar='INPUT', nargs='+', #指明预测后生成的图像文件的名字                        help='filenames of ouput images')    parser.add_argument('--cpu', '-c', action='store_true', #指明使用CPU                        help="Do not use the cuda version of the net",                        default=False)    parser.add_argument('--viz', '-v', action='store_true',                         help="Visualize the images as they are processed", #当图像被处理时,将其可视化                        default=False)    parser.add_argument('--no-save', '-n', action='store_true', #不存储得到的预测图像到某图像文件中,和--viz结合使用,即可对预测结果可视化,但是不存储结果                        help="Do not save the output masks",                        default=False)    parser.add_argument('--no-crf', '-r', action='store_true', #指明不使用CRF对输出进行后处理                        help="Do not use dense CRF postprocessing",                        default=False)    parser.add_argument('--mask-threshold', '-t', type=float,                         help="Minimum probability value to consider a mask pixel white", #最小概率值考虑掩模像素为白色                        default=0.5)    parser.add_argument('--scale', '-s', type=float,                        help="Scale factor for the input images", #输入图像的比例因子                        default=0.5)    return parser.parse_args()def get_output_filenames(args):#从输入的选项args值中得到输出文件名    in_files = args.input     out_files = []    if not args.output: #如果在选项中没有指定输出的图片文件的名字,那么就会根据输入图片文件名,在其后面添加'_OUT'后缀来作为输出图片文件名        for f in in_files:            pathsplit = os.path.splitext(f) #将文件名和扩展名分开,pathsplit[0]是文件名,pathsplit[1]是扩展名            out_files.append("{}_OUT{}".format(pathsplit[0], pathsplit[1])) #得到输出图片文件名    elif len(in_files) != len(args.output): #如果设置了output名,查看input和output的数量是否相同,即如果input是两张图,那么设置的output也必须是两个,否则报错        print("Error : Input files and output files are not of the same length")        raise SystemExit()    else:        out_files = args.output    return out_filesdef mask_to_image(mask):    return Image.fromarray((mask * 255).astype(np.uint8)) #从数组array转成Imageif __name__ == "__main__":    args = get_args() #得到输入的选项设置的值    in_files = args.input #得到输入的图像文件    out_files = get_output_filenames(args) #从输入的选项args值中得到输出文件名    net = UNet(n_channels=3, n_classes=1) #定义使用的model为UNet,调用在UNet文件夹下定义的unet_model.py,定义图像的通道为3,即彩色图像,判断类型设为1种    print("Loading model {}".format(args.model)) #指定使用的训练好的model    if not args.cpu: #指明使用GPU        print("Using CUDA version of the net, prepare your GPU !")        net.cuda()        net.load_state_dict(torch.load(args.model))    else: #否则使用CPU        net.cpu()        net.load_state_dict(torch.load(args.model, map_location='cpu'))        print("Using CPU version of the net, this may be very slow")    print("Model loaded !")    for i, fn in enumerate(in_files): #对图片进行预测        print("\nPredicting image {} ...".format(fn))        img = Image.open(fn)        if img.size[0] < img.size[1]: #(W, H, C)            print("Error: image height larger than the width")        mask = predict_img(net=net,                           full_img=img,                           scale_factor=args.scale,                           out_threshold=args.mask_threshold,                           use_dense_crf= not args.no_crf,                           use_gpu=not args.cpu)        if args.viz: #可视化输入的图片和生成的预测图片            print("Visualizing results for image {}, close to continue ...".format(fn))            plot_img_and_mask(img, mask)        if not args.no_save:#设置为False,则保存            out_fn = out_files[i]            result = mask_to_image(mask) #从数组array转成Image            result.save(out_files[i]) #然后保存            print("Mask saved to {}".format(out_files[i]))

 

4》训练

import sysimport osfrom optparse import OptionParserimport numpy as npimport torchimport torch.backends.cudnn as cudnnimport torch.nn as nnfrom torch import optimfrom eval import eval_netfrom unet import UNetfrom utils import get_ids, split_ids, split_train_val, get_imgs_and_masks, batchdef train_net(net,              epochs=5,              batch_size=1,              lr=0.1,              val_percent=0.05,              save_cp=True,              gpu=False,              img_scale=0.5):    dir_img = 'data/train/' #训练图像文件夹    dir_mask = 'data/train_masks/' #图像的结果文件夹    dir_checkpoint = 'checkpoints/' #训练好的网络保存文件夹    ids = get_ids(dir_img)#图片名字的后4位为数字,能作为图片id    #得到元祖列表为[(id1,0),(id1,1),(id2,0),(id2,1),...,(idn,0),(idn,1)]    #这样的作用是后面重新设置生成器时会通过后面的0,1作为utils.py中get_square函数的pos参数,pos=0的取左边的部分,pos=1的取右边的部分    #这样图片的数量就会变成2倍    ids = split_ids(ids)     iddataset = split_train_val(ids, val_percent) #将数据分为训练集和验证集两份    print('''    Starting training:        Epochs: {}        Batch size: {}        Learning rate: {}        Training size: {}        Validation size: {}        Checkpoints: {}        CUDA: {}    '''.format(epochs, batch_size, lr, len(iddataset['train']),               len(iddataset['val']), str(save_cp), str(gpu)))    N_train = len(iddataset['train']) #训练集长度    optimizer = optim.SGD(net.parameters(), #定义优化器                          lr=lr,                          momentum=0.9,                          weight_decay=0.0005)    criterion = nn.BCELoss()#损失函数    for epoch in range(epochs): #开始训练        print('Starting epoch {}/{}.'.format(epoch + 1, epochs))        net.train() #设置为训练模式        # reset the generators重新设置生成器        # 对输入图片dir_img和结果图片dir_mask进行相同的图片处理,即缩小、裁剪、转置、归一化后,将两个结合在一起,返回(imgs_normalized, masks)        train = get_imgs_and_masks(iddataset['train'], dir_img, dir_mask, img_scale)        val = get_imgs_and_masks(iddataset['val'], dir_img, dir_mask, img_scale)        epoch_loss = 0        for i, b in enumerate(batch(train, batch_size)):            imgs = np.array([i[0] for i in b]).astype(np.float32) #得到输入图像数据            true_masks = np.array([i[1] for i in b]) #得到图像结果数据            imgs = torch.from_numpy(imgs)            true_masks = torch.from_numpy(true_masks)            if gpu:                imgs = imgs.cuda()                true_masks = true_masks.cuda()            masks_pred = net(imgs) #图像输入的网络后得到结果masks_pred,结果为灰度图像            masks_probs_flat = masks_pred.view(-1) #将结果压扁            true_masks_flat = true_masks.view(-1)             loss = criterion(masks_probs_flat, true_masks_flat) #对两个结果计算损失            epoch_loss += loss.item()            print('{0:.4f} --- loss: {1:.6f}'.format(i * batch_size / N_train, loss.item()))            optimizer.zero_grad()            loss.backward()            optimizer.step()        print('Epoch finished ! Loss: {}'.format(epoch_loss / i)) #一次迭代后得到的平均损失        if 1:            val_dice = eval_net(net, val, gpu)            print('Validation Dice Coeff: {}'.format(val_dice))        if save_cp:            torch.save(net.state_dict(),                       dir_checkpoint + 'CP{}.pth'.format(epoch + 1))            print('Checkpoint {} saved !'.format(epoch + 1))def get_args():    parser = OptionParser()    parser.add_option('-e', '--epochs', dest='epochs', default=5, type='int', #设置迭代数                      help='number of epochs')    parser.add_option('-b', '--batch-size', dest='batchsize', default=10, #设置训练批处理数                      type='int', help='batch size')    parser.add_option('-l', '--learning-rate', dest='lr', default=0.1, #设置学习率                      type='float', help='learning rate')    parser.add_option('-g', '--gpu', action='store_true', dest='gpu', #是否使用GPU,默认是不使用                      default=False, help='use cuda')    parser.add_option('-c', '--load', dest='load', #下载之前预训练好的模型                      default=False, help='load file model')    parser.add_option('-s', '--scale', dest='scale', type='float', #图像的缩小因子,用来重新设置图片大小                      default=0.5, help='downscaling factor of the images')     (options, args) = parser.parse_args()    return optionsif __name__ == '__main__':    args = get_args() #得到设置的所有参数信息    net = UNet(n_channels=3, n_classes=1)    if args.load: #是否加载预先训练好的模型        net.load_state_dict(torch.load(args.load))        print('Model loaded from {}'.format(args.load))    if args.gpu: #是否使用GPU,设置为True,则使用        net.cuda()        # cudnn.benchmark = True # faster convolutions, but more memory    try: #开始训练        train_net(net=net,                  epochs=args.epochs,                  batch_size=args.batchsize,                  lr=args.lr,                  gpu=args.gpu,                  img_scale=args.scale)    except KeyboardInterrupt: #如果键盘输入ctrl+c停止,则会将结果保存在INTERRUPTED.pth中        torch.save(net.state_dict(), 'INTERRUPTED.pth')        print('Saved interrupt')        try:            sys.exit(0)        except SystemExit:            os._exit(0)

 

转载于:https://www.cnblogs.com/wanghui-garcia/p/10719121.html

你可能感兴趣的文章
今天小小的继续一下
查看>>
github desktop 官方离线下载地址
查看>>
hive动态分区
查看>>
php 日志库获取调用方的代码文件地址和代码行数
查看>>
浏览器加载和渲染网页顺序
查看>>
微服务架构springcloud
查看>>
深入剖析Android系统试读样章
查看>>
测试用例出错重跑--flaky插件
查看>>
yaf的安装
查看>>
比较java与C++的不同
查看>>
Twitter Storm入门
查看>>
Windows 平台安装 MongoDB
查看>>
Linux Tar Split压缩解压缩分片压缩解压缩
查看>>
使用scikit-learn进行文本分类
查看>>
Ansible自动化运维配置与应用(结合实例)
查看>>
下面简要介绍软件工程的七条原理
查看>>
java POI实现excel实现表格导出
查看>>
Hadoop 新 MapReduce 框架 Yarn 详解
查看>>
Lua(三)——语句
查看>>
TensorFlow的基本运算01
查看>>